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Pattern formation phenomena in systems with
two stable states (bistable) are determined to a
large extent by instabilities of the fronts between
the two states. Fronts between stable uniform
states can go through transverse instabilities lead-
ing to stationary labyrinthine patterns, or through
non-equilibrium Ising-Bloch (NIB) bifurcations
resulting in traveling wave phenomena such as
spiral waves.

We are studying the stability of planar fronts
to transverse perturbations using the Swift-
Hohenberg equation and a model for urban pop-
ulation spread. Contiguous to the linear trans-

verse instability that has been studied in earlier
works, a parameter range is found where planar
fronts arelinearly stablebut nonlinearly unsta-
ble: transverse perturbations beyond some critical
size grow rather than decay.

The nonlinear front instability is a result of
the coexistence of stable planar fronts and sta-
ble large-amplitude patterns. While the linear
transverse instability leads to labyrinthine pat-
terns through fingering and tip splitting, the non-
linear instability often evolves to spatial mixtures
of stripe patterns and irregular regions of the uni-
form states.

Numerical solutions of the
Swift-Hohenberg equation
demonstrating the linear and
nonlinear front instabilities.
The single control parameter
is the linear driving coefficient
ε. (a) In the parameter region
of linear front instability small
perturbations on a front grow
and form a labyrinthine pattern.
In the parameter region of
nonlinear front instability, (b)
small perturbations do not
grow, but (c) large perturba-
tions are sufficient to create
a patterned state. (d) In the
stable parameter range fronts
are globally stable; An initial
pattern state returns to a front.
Time increases in the frames
from left to right.
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Bifurcation diagram for uniform solutions of
the Swift-Hohenberg equation with regions of
linear and nonlinear front instabilities. The
familiar linear transverse front instability is
only found for a range of the control param-
eter up toεT . Beyond that range, forε ∈

[εT ,εM ] fronts are linearly stable but non-
linearly unstable; small perturbations shrink
but sufficiently large perturbations grow.

The Swift-Hohenberg equation is

ut = εu− (∇2
+1)2u−u3,

where u is a real scalar field andε is the bi-
furcation control parameter. The zero solution
u = 0 loses stability to finite-wavenumber per-
turbations atε = 0, and goes through a pitch-
fork bifurcation atε = 1. The two uniform states,
u± = ±

√
ε −1, that appear aboveε = 1 are un-

stable to finite-wavenumber perturbations but be-
come stable aboveε = 3/2.

The front solutions are linearly unstable to
transverse perturbations up to a thresholdε = εT
for which we have an analytic formula. This lin-
ear instability is demonstrated in Figure (a) (on
opposite page). BeyondεT , the linear transverse
instability disappears; small transverse perturba-
tions of the front decay out as Figure (b) shows.
The front, however, remains unstable to finite-
size perturbations, implying anonlinear trans-
verse instability. The instability is demonstrated
in Figure (c) which also shows the asymptotic
pattern that develops - a spatial mixture of par-
allel stripes and regions of the two stable uniform
states. The nonlinear transverse instability disap-
pears at a yet higher threshold,εM , which we cal-
culate numerically using a Lyapunov functional.
Figure (d) demonstrates the global front stability
aboveεM by showing the retraction of a pattern
state to a planar front.

The asymptotic patterns that develop from
nonlinear transverse front instabilities can differ
considerably from the labyrinthine patterns that
develop from linear front instabilities. The linear
stability of the fronts along with the stability of
the symmetric uniform states often favor the for-
mation of uniform solution regions intermingled
with stripes (see Figure (c) on the opposite page).
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